National 5G Energy Hub

Brief Description of "Use Cases"

User Story: "Smart Grid" and "Smart Building"

	User Story			
	Smart Grid Intelligent and <i>robust operation</i> of electrical power supply systems to enable <i>improvement of energy efficiency</i> and flexibility while maintaining reliability		Smart Building Control of energy systems in buildings under various target functions, such as <i>energy efficiency</i> , reduction of CO2 emissions or increase of self demand share covered by renewable energies.	
Regional	PQ-Monitoring			
	Latency: not relevant	Data points: 3x25x300		
	Voltage Regulation MV-grid		Building-Monitoring	
	Latency: <1 s	Data points: approx. 3x300	Latency: < 30 s	Data points: < 8000
Use Case	Regional Virtual Power Plant Latency: < 350 ms		(Regional-VPP) Data points: < 150.000	
	State Estimation LV-grid		Cloud Control of Energetic Systems	
	Latency: 100 ms adressed	Data points: 3x300	Latency: < 200 ms	Data points: < 8000
	Grid Protection Support (fault detection)		1	
Local	Latency: 1 ms adressed	Data points: 3x300		
2	Dresden / Aachen February 2019			(

- PV systems and CHPs in particular are connected at the LV and MV levels
- Grid-compatible operation of the decentralised producers through the use of thermal flexibilities (sector coupling)
- Participation in energy trading possible through information technology bundling of facilities
- Use of the structure for control and monitoring

Objective:

- Control of decentralized consumers and producers
- Coupling of electricity and heating market
- Energy and cost optimal operation local/overarching

<u>Users:</u>

- local energy companies
- network operator (electrical network / gas and district heating network)
- energy service
- building owner

Regional Virtual Power Plant (Regional-VPP)

4

- PV systems and CHPs in particular are connected at the LV and MV levels
- The will to increase resource efficiency and cost pressure motivate the development towards a more decentralised energy distribution
- The LV and MV levels, however, have only a rudimentary protection concept
- Implementation of grid protection with the help of the Smart Meter Gateway (SMG) open
 Advanding on the SMC administrator
 - \rightarrow depending on the SMG administrator

Objective:

- Establishment of a separate reserve protection in the LV and MV level advantages: radio-supported, retrofittable, cost-effective, diversity compared to SMG
- Reliable detection of faults through reserve protection in the LV network
- Evaluation of grid states (e.g. short-term overload) as support for grid protection in the MV grid

<u>User:</u>

- Local energy companies
- Electrical network operators (distribution network / local network)

LV/MV-grids: grid protection

- The integration of different sensor and actuator types in building automation systems is a complex task:
 - High cabling effort
 - Low interoperability of different bus systems
- Maintainability of the automation software on local controllers is difficult
- => Cloud-based building automation by using 5G

Objective:

- Thermal and electrical system monitoring
- Control and optimization of building energy systems

<u>User:</u>

- Building operator/owner
- Building user
- Energy supplier
- Contractor

Building Cloud Monitoring

Use Case 3b

Building Cloud Closed Loop Control (incl. Monitoring)

Dresden / Aachen | February 2019

- Enhancement of DSO grid management (limiting operational costs) through improvements in grid monitoring and in the algorithms based on grid monitoring
- Better management and control of islanded microgrids under disturbance though low-cost PMU in presence of mobile edge cloud

Objective:

- Development of the grid monitoring based on the low-cost PMU hardware and implementation of the algorithms utilizing the hardware with the features of increased reporting rate and lower latency between the measurement and the final output of the monitoring and control algorithms (e.g. state estimation algorithm as well as subsequent algorithms e.g. based on optimal power flow).
- Development of control and management of the islanded microgrid through the monitoring based on PMUs and potential of running services in the edge cloud under blackout conditions of the bulk power system

User:

- Electrical network operators (distribution network / local network)
- Aggregators / VPPs or microgrid operators

LV/MV-grids: monitoring and control with PMU

The applications for grid monitoring and control run in either core or edge cloud

- The performance of algorithms is assessed after implementation of improved low-cost PMU, also under more dynamic conditions.
- Under conditions of a blackout, when the core cloud is unavailable, the applications should run only in the edge cloud and the control algorithms should be ready for such scenario
- Low-cost PMUs hardware as the basic device to monitor the grid
- Other devices, also actuators are virtualized in the simulation environment

17